Surface tensions: surface, finish and the meaning of objects

Description/Abstract: This volume of essays, edited by Glenn Adamson and Victoria Kelley, is the final research outcome of the Surface Tensions research cluster formed in 2008, with the aim of inspiring and drawing together research into the surface material qualities of designed objects. The cluster's main focus was a network collaboration between UCA and the Victoria and Albert Museum, which included symposia at UCA Rochester, the V&A, and the Royal College of Art.

Surfaces are often held to be of lesser consequence than 'deeper' or more 'substantive' aspects of artworks and objects. Yet it is also possible to conceive of the surface in more positive terms: as a site where complex forces meet. Surfaces can be theorized as membranes, protective shells, sensitive skins, even thicknesses in their own right. The surface is not so much a barrier to content as an opportunity for encounter: in new objects, the surface is the site of qualities of finish, texture, the site of tactile interaction, the last point of contact between object and maker, and the first point of contact between object and user.

Surface tensions includes sixteen essays that explore this theoretically uncharted terrain. The subjects range widely: domestic maintenance; avant-garde fashion; the faking of antiques; postmodern architecture and design; contemporary film costume. Of particular emphasis within the volume are textiles, which are among the most complex and culturally rich materialisations of surface. As a whole, the book provides insights into the whole lifecycle of objects, not just their condition when new.
as water and oil), it is called "interface tension." Causes of Surface Tension. Various intermolecular forces, such as Van der Waals forces, draw the liquid particles together. Along the surface, the particles are pulled toward the rest of the liquid, as shown in the picture to the right. The contact angle can be used to determine a relationship between the liquid-solid surface tension and the liquid-gas surface tension, as follows: \(\gamma_{ls} = -\gamma_{lg} \cos \theta \).